ADDITION AND MULTIPLICATION MODULO N

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog and include the title or URL of this post in your comment.

Post date: 13 September 2025.

The $\mod n$ relation is an equivalence relation. The set \mathbb{Z}_n is defined as the set of equivalence classes for the integer n:

$$\mathbb{Z}_n = \{ [0]_n, [1]_n, \dots, [n-1]_n \}$$
 (1)

Addition and multiplication can be defined on \mathbb{Z}_n . These create new relations defined as follows.

$$\oplus_n : \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n \text{ (addition)}$$
 (2)

$$\otimes_n : \mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$$
 (multiplication) (3)

Addition is defined as

$$[a] \oplus_n [b] = [a+b] \tag{4}$$

where the square brackets indicate equivalence classes.

Example 1. We have

$$[5] \oplus_{10} [4] = [9] \tag{5}$$

$$[6] \oplus_{10} [5] = [11] = [1] \tag{6}$$

$$[-3] \oplus_{10} [-13] = [-16] = [4] \tag{7}$$

In the last example, we must express -16 in quotient-remainder form, where the remainder is always positive, which is $-16 = -2 \times 10 + 4$.

Multiplication is defined as

$$[a] \otimes_n [b] = [ab] \tag{8}$$

Example 2. We have

$$[5] \otimes_{10} [4] = [20] = [0] \tag{9}$$

$$[6] \otimes_{10} [7] = [42] = [2] \tag{10}$$

$$[-3] \otimes_{10} [13] = [-39] = [1] \tag{11}$$

We can also define multiples and powers of classes. For k > 0 we have

$$k[a] = \underbrace{[a] \oplus_n [a] \oplus_n \dots \oplus_n [a]}_{k \text{ times}}$$
(12)

$$[a]^k = \underbrace{[a] \otimes_n [a] \otimes_n \dots \otimes_n [a]}_{k \text{ times}}$$
(13)

Example 3. We have

$$3[4]_8 = [4] \oplus_8 [4] \oplus_8 [4] = [12]_8 = [4]_8$$
 (14)

$$[4]_{8}^{4} = [4] \otimes_{8} [4] \otimes_{8} [4] \otimes_{8} [4] = [256]_{8} = [0]$$
(15)

The *multiplicative inverse* of a class [a], denoted as $[a]^{-1}$, is a class [b] such that $[a] \otimes_n [b] = [1]$. Not all classes have multiplicative inverses.

Example 4. We have, for \mathbb{Z}_{10} :

$$[3] \otimes_{10} [7] = [21] = [1] \tag{16}$$

so
$$[3]^{-1} = [7]$$
 and $[7]^{-1} = [3]$.

The class [2] has no inverse in \mathbb{Z}_{10} since multiplying 2 by any integer always gives an even integer, so the associated equivalence class can never be [1]. Besides [3] and [7], the only other inverses in \mathbb{Z}_{10} are [9], and [1], which are their own inverses, since $[9] \otimes_{10} [9] = [81] = [1]$ and $[1] \otimes_{10} [1] = [1]$. Thus, for example, $[2]^{-1}$ is not defined for \mathbb{Z}_{10} .

In general, the multiplicative inverse of a class [a] modulo n exists if and only if gcd(a, n) = 1. That is, a and n are relatively prime.

For \mathbb{Z}_7 , we have an inverse for all a such that $1 \le a \le 6$, since all these numbers are relatively prime with 7:

$$[1]^{-1} = [1] \tag{17}$$

$$[2]^{-1} = [4] (18)$$

$$[3]^{-1} = [5] (19)$$

$$[6]^{-1} = [6] (20)$$

For a class that has an inverse, we may define a negative power. That is, for k > 0 we have, if [a] has an inverse:

$$[a]^{-k} = \underbrace{[a]^{-1} \otimes_n [a]^{-1} \otimes_n \dots \otimes_n [a]^{-1}}_{k \text{ times}}$$
(21)

Example 5. We have, for \mathbb{Z}_{10} :

$$[3]^{-3} = [7]^3 = [343] = [3]$$
 (22)

PINGBACKS

Pingback: Cayley tables for finite groups